Upregulation of miR-96 Enhances Cellular Proliferation of Prostate Cancer Cells through FOXO1
نویسندگان
چکیده
Aberrant expression of miR-96 in prostate cancer has previously been reported. However, the role and mechanism of action of miR-96 in prostate cancer has not been determined. In this study, the diagnostic and prognostic properties of miR-96 expression levels were investigated by qRT-PCR in two well documented prostate cancer cohorts. The miR-96 expression was found to be significantly higher in prostate cancer patients and correlate with WHO grade, and decreased overall survival time; patients with low levels of miR-96 lived 1.5 years longer than patients with high miR-96 levels. The therapeutic potential was further investigated in vitro, showing that ectopic levels of miR-96 enhances growth and cellular proliferation in prostate cancer cells, implying that miR-96 has oncogenic properties in this setting. We demonstrate that miR-96 expression decreases the transcript and protein levels of FOXO1 by binding to one of two predicted binding sites in the FOXO1 3'UTR sequence. Blocking this binding site completely inhibited the growth enhancement conveyed by miR-96. This finding was corroborated in a large external prostate cancer patient cohort where miR-96 expression inversely correlated to FOXO1 expression. Taken together these findings indicate that miR-96 plays a key role in prostate cancer cellular proliferation and can enhance prostate cancer progression. This knowledge might be utilized for the development of novel therapeutic tools for prostate cancer.
منابع مشابه
Upregulation of MircoRNA-370 Induces Proliferation in Human Prostate Cancer Cells by Downregulating the Transcription Factor FOXO1
Forkhead box protein O1 (FOXO1), a key member of the FOXO family of transcription factors, acts as a tumor suppressor and has been associated with various key cellular functions, including cell growth, differentiation, apoptosis and angiogenesis. Therefore, it is puzzling why FOXO protein expression is downregulated in cancer cells. MicroRNAs, non-coding 20~22 nucleotide single-stranded RNAs, r...
متن کاملThe Antiapoptotic Function of miR-96 in Prostate Cancer by Inhibition of FOXO1
microRNAs (miRNAs) are small molecules that regulate gene expression posttranscriptionally. In a previous study, we identified miR-96 to be upregulated in prostate cancer specimens in comparison to normal adjacent tissue and to be an independent marker of biochemical relapse in a multivariate prediction model. Therefore, we investigated the functional role of miR-96 in prostate carcinogenesis. ...
متن کاملMiR-96 induced non-small-cell lung cancer progression through competing endogenous RNA network and affecting EGFR signaling pathway
Objective(s): Non-small cell lung cancer (NSCLC) has become a serious global health problem in the 21st century, and tumor proliferation and metastasis are the leading causes of death in patients with lung cancer. The present study aimed to verify the function of miR-96 and miR-96 in relation to competing with endogenous RNA regulatory network in NSCLC progression inc...
متن کاملInhibition of miR-96 expression reduces cell proliferation and clonogenicity of HepG2 hepatoma cells.
microRNAs (miRNAs) are negative regulators of gene expression and can function as tumor suppressors or oncogenes. Several miRNAs are associated with the development of hepatocellular carcinoma (HCC). miR-96 has been closely associated with cell proliferation and clonogenicity. Upregulation of miR-96 has been observed in various types of cancer. However, the biological function of miR-96 in hepa...
متن کاملCoordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells.
The FOXO1 transcription factor orchestrates the regulation of genes involved in the apoptotic response, cell cycle checkpoints, and cellular metabolism. FOXO1 is a putative tumor suppressor, and the expression of this gene is dysregulated in some cancers, including prostate and endometrial cancers. However, the molecular mechanism resulting in aberrant expression of human FOXO1 in cancer cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013